Separating the spindle, checkpoint, and timer functions of BubR1

نویسندگان

  • Zohra Rahmani
  • Mary E. Gagou
  • Christophe Lefebvre
  • Doruk Emre
  • Roger E. Karess
چکیده

BubR1 performs several roles during mitosis, affecting the spindle assembly checkpoint (SAC), mitotic timing, and spindle function, but the interdependence of these functions is unclear. We have analyzed in Drosophila melanogaster the mitotic phenotypes of kinase-dead (KD) BubR1 and BubR1 lacking the N-terminal KEN box. bubR1-KD individuals have a robust SAC but abnormal spindles with thin kinetochore fibers, suggesting that the kinase activity modulates microtubule capture and/or dynamics but is relatively dispensable for SAC function. In contrast, bubR1-KEN flies have normal spindles but no SAC. Nevertheless, mitotic timing is normal as long as Mad2 is present. Thus, the SAC, timer, and spindle functions of BubR1 are substantially separable. Timing is shorter in bubR1-KEN mad2 double mutants, yet in these flies, lacking both critical SAC components, chromosomes still segregate accurately, reconfirming that in Drosophila, reliable mitosis does not need the SAC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1.

The BubR1 checkpoint protein performs multiple functions in mitosis. We have carried out a functional analysis of conserved motifs of human BubR1 (also known as BUB1B) and demonstrate that spindle assembly checkpoint (SAC) and chromosome attachment functions can be uncoupled from each other. Mutation of five proline-directed serine phosphorylation sites, identified in vivo by mass spectrometry,...

متن کامل

BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1

The spindle checkpoint delays anaphase onset until all chromosomes have attached properly to the mitotic spindle. Checkpoint signal is generated at kinetochores that are not bound with spindle microtubules or not under tension. Unattached kinetochores associate with several checkpoint proteins, including BubR1, Bub1, Bub3, Mad1, Mad2, and CENP-E. I herein show that BubR1 is important for the sp...

متن کامل

Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation

The BubR1/Bub3 complex is an important regulator of chromosome segregation as it facilitates proper kinetochore-microtubule interactions and is also an essential component of the spindle assembly checkpoint (SAC). Whether BubR1/Bub3 localization to kinetochores in human cells stimulates SAC signalling or only contributes to kinetochore-microtubule interactions is debated. Here we show that two ...

متن کامل

Dynein light intermediate chain 1 is required for progress through the spindle assembly checkpoint.

The spindle assembly checkpoint monitors microtubule attachment to kinetochores and tension across sister kinetochores to ensure accurate division of chromosomes between daughter cells. Cytoplasmic dynein functions in the checkpoint, apparently by moving critical checkpoint components off kinetochores. The dynein subunit required for this function is unknown. Here we show that human cells deple...

متن کامل

Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope

Accurate chromosome segregation is controlled by the spindle checkpoint, which senses kinetochore- microtubule attachments and tension across sister kinetochores. An important step in the tension-signaling pathway involves the phosphorylation of an unknown protein by polo-like kinase 1/Xenopus laevis polo-like kinase 1 (Plx1) on kinetochores lacking tension to generate the 3F3/2 phosphoepitope....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 187  شماره 

صفحات  -

تاریخ انتشار 2009